
StormDroid: A Streaminglized Machine Learning-Based
System for Detecting Android Malware

Sen Chen
Dept. of Computer Science

East China Normal University
ecnuchensen@gmail.com

Minhui Xue
East China Normal University

NYU Shanghai
minhuixue@nyu.edu

Zhushou Tang
Shanghai Jiao Tong University

Pwnzen Infotech Inc.
ellison.tang@gmail.com

Lihua Xu
Dept. of Computer Science

East China Normal University
lhxu@cs.ecnu.edu.cn

Haojin Zhu
Dept. of Computer Science

Shanghai Jiao Tong University
zhu-hj@cs.sjtu.edu.cn

ABSTRACT
Mobile devices are especially vulnerable nowadays to malware at-
tacks, thanks to the current trend of increased app downloads. De-
spite the significant security and privacy concerns it received, effec-
tive malware detection (MD) remains a significant challenge. This
paper tackles this challenge by introducing a streaminglized ma-
chine learning-based MD framework, StormDroid: (i) The core of
StormDroid is based on machine learning, enhanced with a novel
combination of contributed features that we observed over a fairly
large collection of data set; and (ii) we streaminglize the whole
MD process to support large-scale analysis, yielding an efficient
and scalable MD technique that observes app behaviors statically
and dynamically. Evaluated on roughly 8,000 applications, our
combination of contributed features improves MD accuracy by al-
most 10% compared with state-of-the-art antivirus systems; in par-
allel our streaminglized process, StormDroid, further improves ef-
ficiency rate by approximately three times than a single thread.

CCS Concepts
•Security and privacy → Malware and its mitigation; Mobile
platform security; •Computing methodologies → Supervised
learning by classification;

Keywords
Malware Detection; Machine Learning; StormDroid

1. INTRODUCTION
The number of mobile devices has been skyrocketing in the past

several years, eclipsed traditional computers as points of entry to
the Internet in an era of “always-on, always-connected” communi-
cations. Mobile devices are able to access data in a wide variety
of forms, from text messaging to live applications for streaming
services, gaming, and beyond. They are increasingly characterized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’16, May 30 – June 3, 2016, Xi’an, China.
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897860

by their pervasiveness and connectedness in all facets of daily life.
A recent report1 shows that there are about 1.6 million apps in the
Google Play Store in July 2015.

Unfortunately, with recent trends in increased apps downloading,
mobile devices are especially vulnerable to Android malware, often
spread by masquerading as useful programs. For example, mobile
device malware rates2 – reflecting the number of devices attacked
but not infected – surged 75% from 2013 to 2014. Worse yet, at-
tackers have also innovated in the way they infect new devices, such
as using third party developer stolen keys to sign malware samples,
or taking advantage of zero days exploits to get root access to the
device.

Recent Android’s countermeasures aim to solve this problem via
one of the following two methods: signature-based and behavior-
based. This work follows the line of behavior-based method, which
either statically or dynamically observes the apps behaviors and
then inductively categorizes them. More specifically, static analy-
sis techniques observe the unpacked apps statically to identify sus-
picious trace of data. While useful to detect known threats, it is dif-
ficult to identify new malicious apps, such as zero-day attacks [16].
Dynamic analysis techniques, on the other hand, observe the app’s
behaviors through its actual execution on real devices. Although
the information observed correctly reflex the app’s exact intention,
the execution leads to excessive consumption of Android operating
system (OS) [7].

To address these problems, various machine learning methods
have recently been studied to sift through large sets of applications
and detect malicious applications based on measures of similarity
of features [34]. However, several reasons hinder the well adop-
tion of machine learning methods into MD in practice. First, the
difficulty of identifying contributed features. To our knowledge,
Permissions and Sensitive API calls are still by far the most well-
received and -used features for machine learning in MD [24]. Sec-
ond, few large-scale data sets available to train the machine learn-
ing model. Yuan et al. [38] utilize only 500 apps in total for train-
ing and testing. Third, the complexity of measuring MD scheme
has always been a challenge, especially in the case of malware de-
tectors whose authors claim that they work “in the wild”. Rasthofer
et al. [27] claim that their approach has an average precision and
recall of more than 92% according to the 10-fold cross validation.

1http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/
2http://www.cnbc.com/2015/01/14/
mobile-malware-jumped-75-percent-in-2014-report.html

377

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2897845.2897860&domain=pdf&date_stamp=2016-05-30

While Allix et al. [2] revisit the adequacy of the 10-fold scheme
and questions that validating techniques may not perform well in
reality. Fourth, the practicality of processing a large-scale data set
in a reasonable amount of time. To our knowledge, MassVet [9] is
the only tool to compute a large data set within a very short time
over Storm.

The aforementioned challenges underline the importance of ef-
fective automated malware detection. To this end, this paper
presents a combined set of contributed features for machine learn-
ing classifiers. We observe roughly 3,000 apps from different
sources, analyze their similarities and differences, and identify two
unique types of contributed features, sequences, and dynamic be-
haviors. Together with the two well-known features, requested per-
missions and sensitive APIs, our approach combines 4 types of con-
tributed features that are uniquely set malicious apps apart.

Furthermore, this paper introduces a streaminglized process that
effectively handles the large-scale data set. Our proposed process
occurs in three phases: Preamble, which prepares resource files
for extracting features; Feature Extraction, which extracts features
from each app based on our combined set of contributed features;
and Classification, which trains fairly large sets of labeled Android
applications and further classifies the data set into different cate-
gories, benign and malicious. We extend the idea of “stream” into
the execution phases of our process, where all phases happen al-
most simultaneously with streams of data. With the help of stream-
ing execution phases over data streams, processing a large data set
becomes practical.

We have built our streaminglized MD framework, StormDroid,
on top of Storm, an open-source distributed real-time stream-
processing engine that also powers leading web services, such as
WebMD, Alibaba, and Yelp. StormDroid supports a large-scale
analysis of a data stream by a set of worker units that connect to
each other, forming a topology. We perform malware detection on
roughly 5,000 real apps, a different data set from the 3,000 apps
used to observe and analyze contributed features. By comparing
the performance of the proposed combination of contributed fea-
tures against the two traditional features, our approach can improve
detection rate by almost 10% in terms of accuracy. Evaluation re-
sults show that StormDroid can reduce execution time by approxi-
mately three times than a single thread, and is able to achieve 94%
accuracy, significantly outperforming almost all the top-of-the-line
and off-the-shelf antivirus systems.

In summary, this paper presents the following original contribu-
tions:

• A novel combination of contributed features observed over a
fairly large collection of data that supports our machine learn-
ing based MD approach;

• A streaminglized MD framework that supports a large-scale
analysis of a data stream in all stages of processing;

• An implementation of feature extraction and data process-
ing, named StormDroid, over a distributed real-time stream-
processing system;

• A real-word experiment over a fairly large data set (i.e., roughly
8,000 apps), demonstrating the efficiency and scalability of Stor-
mDroid.

The remainder of the paper is structured as follows. In Sec-
tion 2, we present the background of Android. We then proceed
to overview the learning framework and show our data sets and
feature extraction in Section 3. Experimental evaluation is summa-
rized in Section 4. Section 5 discusses the experimental limitation.
Section 6 surveys related work. Finally, Section 7 concludes the
paper.

2. BACKGROUND
In this section, we provide an overview of the Android appli-

cation structure, focusing on the important APK resource files. We
finally review the two most popular security approaches of Android
OS and two common types of malware detection techniques.

2.1 Android Application
Android applications are developed in Java programming lan-

guage. However, unlike the desktop version of Java apps, the class
files in Android apps are not loaded directly. Instead, Android’s de-
velopment tools combine the resource file and the classes.dex file
transformed from class file to make an APK; then the APK gets
loaded.
APK. The APK files are the final outcomes of Android project,
thereby they are ready to be registered in the Android markets. The
compressed format of this file is zip, which allows us to easily open
with compressing tools, such as 7-zip, rar. Note that we cannot
figure out the resource file before decompiling.
AndroidManifest. The Manifest file is a basic configuration file
that holds information about the overall structure of apps. Each app
must have an AndroidManifest.xml file in its root directory. This
file presents essential information about the app to the Android OS
and the operating system must have it before running any of the
application’s code, including version, required permission, etc.

2.2 Security Approaches
Two most popular security approaches of Android OS are listed

as follows.
Market Protection. Admittedly, none of the markets can guaran-
tee that the submitted apps are benign. Currently two basic security
measures are taken into action to keep a normative environment at
the market level, as shown in the following. However, both below
measures have proven so far insufficient to combat malware.

• Signing. Most markets force developers to legally sign their
apps. App signing is the process of digitally signing executa-
bles to confirm the app author and guarantee that the code has
not been altered or corrupted by using a cryptographic hash. All
apps require developers to use a certificate to digitally sign. Once
the digital certificate is valid, Android will check the certificate
is valid only when the app is installed. Android OS will not be
installed without the signature of the app. The signature for each
file in the package is processed in order to ensure that the con-
tents of the package is not replaced.

• Review. Submitted apps are preliminarily reviewed or analyzed
before being downloaded from markets. Once Android markets
find a potential malicious app, they will record its signature of
the corresponding app for a more in-depth detection later.

Platform Protection. Android platform takes advantage of the fol-
lowing two measures to limit the potential damage of malicious
apps once installed on the mobile phone.

• Sandboxing. Sandboxing, also called app containerization, is
used to limit the environments in which certain code can exe-
cute. The goal of sandboxing is to improve security by isolating
an app to prevent outside malware, intruders or other apps from
interacting with the protected app. The sandboxing has to con-
tain all the files the app needs to execute, which can also create
problems between apps that need to interact with one another.

• Permission. Android security model highly relies on
permission-based method. Before each app being installed, the
system will prompt a list of permissions requested by the app
and ask the user to confirm the settings for installation. This per-
mission security approach is indeed ineffective as it presents the

378

risk information of each app in a “stand-alone” fashion and in
a way that requires too much technical knowledge and time to
distill useful information. For instance, either a benign or a ma-
licious app may require the same permissions and thus it is hard
for users to make a right judgment.

2.3 Detection Techniques
Two common types of malware detection techniques, which will

frequently be used later, are introduced as follows.
Static analysis. Static analysis attempts to identify malicious code
by unpacking and decompiling the app. It is a relatively fast ap-
proach and it has been widely used in preliminary analysis to search
for blocks of code as signature. Static analysis techniques are well-
known in traditional malware detection and have recently gained
popularity as efficient mechanisms for market protection, but the
result with limited signature database.
Dynamic analysis. Dynamic analysis seeks to identify malicious
behaviors after deploying and executing the app on real device.
These techniques require some human or automated interaction
with the app, as malicious behavior is sometimes triggered only
after certain events occur. Dynamic analysis can be used both in
the cloud for market protection or directly on the device, though
given the uncertainty on the resource consumption and execution
time.

3. STORMDROID FRAMEWORK
In this section, we take a first look at the behavior-based learning

framework, StormDroid, for Android malware detection. We show
what it is and how it works. We then follow the workflow that
Figure 1 presents and describe their major components and tech-
niques. We finally take an in-depth dive into our data sets and show
the methods and steps when selecting the contributed features.

3.1 StormDroid Overview
The high level execution process of our analysis framework,

StormDroid, as illustrated in Figure 1, occurs in three phases:
Preamble, which prepares resource files for extracting features;
Feature Extraction, which extracts features from each app base on
our combined set of contributed features; and Classification, which
trains large sets of labeled Android applications and further classi-
fies the data set into different categories, benign and malicious. We
extend the idea of “stream” into the execution phases of our pro-
cess, where all phases happen almost simultaneously with streams
of data. With the help of streaming execution phases over data
streams, processing a large data set becomes practical.

To provide an overview on learning framework, we de facto per-
form streaminglized fairly large-scale experiments where the train-
ing is performed on 3,000 apps. The trained classifier is then used
to predict the class of every single application from the training set.
Those predictions are then tested on the test data set to estimate
the overall accuracy of the selected machine learning approaches.
Those predictions are later compared to our reference classification,
as shown in Section 4.

3.2 Data Sets
As mentioned earlier, most studies lack a fairly large number

of data samples. We fulfill the need by presenting the first fairly
large collection of 7,970 Android app samples, including 3,620
malicious samples, which covers the majority of existing to recent
ones. Specifically, these 7,970 APK files we collected consist of
4,350 benign apps that are downloaded from Google Play Store,
and the other 3,620 malicious APK files where 1,260 have been
validated in [40] and the remaining are downloaded from Contagio

Mobile Website3 (360 APKs) and MobiSec Lab Website4 (2,000
APKs) (See Table 1). Our malicious apps include all varieties of
the threats for Android, including phishing, trojans, spyware, root
exploits, etc.

3.3 Features
In order to select the contributed features to support the classifi-

cation results with high precision and sufficient recall, we take an
in-depth dive into our features for machine learning. We list four
types of features – well received features (required permissions,
sensitive API calls), as well as newly-defined features (sequences,
dynamic behaviors) – to attempt to characterize each of the android
apps by employing both static and dynamic analysis, respectively.
All of our features are shown in Table 2. (All features are specified
in Appendix A.)

3.3.1 Well-received Features
Permission. Android required permission, extracted from resource
code, is commonly used to help detect malicious apps. Each APK
has an AndroidManifest file in its root directory, which is an essen-
tial and important profile including information about the Android
application. Android OS must process this profile before it runs
any of installation. The profile file declares which permissions the
app must have in order to access protected parts of the API and in-
teract with other apps. It also declares the permissions that others
are required to have in order to interact with the application’s com-
ponents. These permissions are raw data. We then use Apktool5, a
tool for decompiling on APK files, to generate the AndroidMani-
fest file and extract requested permissions from it for each APK. To
demonstrate that permission settings are indeed relevant to the be-
nign or malware behaviors, we compare top permissions requested
by these malicious apps in the data set of 3,032 samples with top
permissions requested by benign ones.

The distribution of top 10 permissions requested by 3,032
malicious and benign samples is shown in Figure 2(a).
The permissions are ordered by decreasing number of mali-
cious apps. Figure 2(a) clearly shows that “INTERNET”,
“READ_PHONE_STATE”, “ACCESS_NETWORK_STATE”, and
“WRITE_EXTERNAL_STORAGE” are frequently requested by
both benign and malicious apps. In comparison, malicious
apps clearly tend to request more frequently in the categories
of “READ_SMS”, “WRITE_SMS”, “SEND_SMS”, and “RE-
CEIVE_SMS”. Also, in specific top 10 permissions being studied,
we observe that malicious apps largely request more permissions
than benign ones.

For experiment, we randomly choose 1,516 benign and mali-
cious APKs, respectively from our data sets. We find that several
well-known features do not help distinguish between benign and
malicious apps, which will increase system overhead. Therefore,
we remove some well-known permission-based features, such as
“CHANGE_COMPONENT_ENABLED_STATE”, and “INTER-
NAL_SYSTEM_WINDOW”. Apart from prior researches, we also
add several new features, such as “READ_CALL_LOGS” and
“READ_EXTERNAL_STORAGE”, as input features. In order to
find the top permission features that yield the best performance in
detecting new malware, we ultimately select 59 out of 120 permis-
sions as features from the AndroidManifest file of each of the 7,970
benign and malicious APKs.
Sensitive API Call. Sensitive API monitoring, based on the re-
verse engineering, can monitor those sensitive APIs, such as send-

3http://contagiominidump.blogspot.hk/
4http://www.mobiseclab.org/
5http://ibotpeaches.github.io/Apktool/

379

Figure 1: The StormDroid Framework for Android Malware Detection

Table 1: Data Sets for Android Malware Detection

Source
Type of Sets Universal Set Analysis Set Training Set Test Set Comparison Set

Benign (APKs) 4,350 1,516 1,500 1,000 0

Malicious (APKs)
MobiSec Lab 2,000 900 900 600 500

Zhou et al. [40] 1,260 500 500 300 400
Contagio 360 116 100 100 100

Total (APKs) 7,970 3,032 3,000 2,000 1,000

Table 2: Features for Machine Learning

Type of Features Original Features Selected Features
Permission 120 59

Sensitive API Call 240 90

Sequence 67 1

Dynamic Behavior 15 5

Total 442 155

ing SMS, accessing user location, device ID, and phone number.
We obtain Smali files from the static decompiling because convert-
ing a DEX file to Smali files gives us readable code in Smali lan-
guage. We then locate the concrete position of the sensitive API,
and embed monitoring Smali bytecode to each different sensitive
API. We extract sensitive API calls from Smali files for each app.
The android platform provides a framework API that apps can be
used to interact with the underlying Android OS. The framework
API consists of a core set of packages and classes. Since most apps
use a fairly large number of APIs, we are motivated to use API calls
of each app as a feature to characterize and differentiate malware
from benign apps.

To demonstrate that API calls are indeed helpful for differentiat-
ing benign and malware apps, we plot the top 10 sensitive API calls
used for both malicious and benign apps in Figure 2(b). As we ob-
serve from Figure 2(b), it does not clearly show that malicious apps
largely request more API calls than benign ones.

For experiment, we choose 1,516 benign and malicious APKs,
respectively from our data sets. We find that several well-known
features do not help distinguish between benign and malicious
apps, which will increase system overhead. Therefore, we re-
move some well-known sensitive API call-based features, such
as “URLConnection;->getContentType” and “URLConnection;-
>getURL”. In order to find the top sensitive API call features that
yield the best performance in detecting new malware, we ultimately
select 90 out of 240 sensitive API calls as features from the Smali
file of each of the 7,970 benign and malicious APKs.

3.3.2 Newly-defined Features
Sequence. Through closely examining the sensitive API calls col-
lected over our fairly large collection of apps, we notice that the
malicious apps tend to have drastically different sensitive API calls,
which supports the assumption that malicious apps are distinguish-
able from benign apps. Therefore, we take a closer look at the
quantity of sensitive API calls, and novelly define “Sequence” as
features extracted from Smali files by recording the number of sen-
sitive API calls requested by the malicious apps and the benign
ones, respectively. We propose three quantitive metrics for extract-
ing sequence, as depicted in the following.
(i) “Subtraction-Differential” metric. In order to analyze the
difference between malicious apps and benign ones, we first de-
fine a “subtraction-differential” metric. The differential d(s,m,b)

(or d(s,b,m)) depends on a particular sensitive API call s, a mali-

380

RECEIVE_SMS

SEND_SM

WRITE_SMS

RECEIVE_BOOT_COMPLETED

READ_SMS

ACCESS_WIFI_STATE

WRITE_EXTERNAL_STORAGE

ACCESS_NETWORK_STATE

READ_PHONE_STATE

INTERNET

0 500 1000 1500
Number of Samples

To
p

10
 P

er
m

is
si

on
s

Type Benign Malicious

(a) Comparison of top 10 requested permissions by
3,032 benign and malicious apps

Disconnect

GetResponseCode

Notify

Query

SetReadTimeout

GetSubscriberId

SetConnectTimeout

Connect

GetDeviceId

OpenConnection

0 500 1000 1500
Number of Samples

To
p

10
 A

PI
 C

al
ls

Type Benign Malicious

(b) Comparison of top 10 requested sensitive API calls
by 3,032 benign and malicious apps

Figure 2: Comparison of top 10 requested permissions and sensitive API calls by 3,032 benign and malicious apps

cious app m, a benign app b, and is defined as follows:

ms = a malicious app m w.r.t. # sensitive API call s;

bs = a benign app b w.r.t. # sensitive API call s;

d(s,m,b) = difference between ms and bs;

d(s,b,m) = difference between bs and ms.

We then denote D1 (resp. D2) as the set of top values of d(s,m,b)

(resp. d(s,b,m)) that outnumber the threshold 200, where the cardi-
nality of the set D1 (resp. D2) is 13 (resp. 14). We finally denote
the union D = D1 ∪ D2.
(ii) “Logarithm-Differential” metric. Followed up with the
above definitions, we further define a “logarithm-differential” met-
ric, as shown as follows:

lg

{(
ms

bs + 1

)
+ 1

}
. (1)

Notice that Equation (1) has already been regularized to avoid am-
biguity.

We filter out the top 16 values of Equation (1) that are greater
than 0.4 (symbolized as the set L1) and the bottom 11 values of
Equation (1) that are less than 0.05 (symbolized as the set L2). We
finally denote the union L = L1 ∪ L2.
(iii) “Subtraction-Logarithm” metric. We eventually denote set
S to be the intersection S = D ∩ L, where the cardinality of the
set S is 13. We summarize the details of all the sets in Table 3.

For experiment, we set weights for each element in the
sequence set S depending on the “Subtraction-Differential”
metric. For example, if the d(s,m,b) of the first feature
“TelephonyManager;->getSimState” in set S is 607, we then set
its weight as +(607/1,516); if the d(s,b,m) of the last feature
“DownloadManager;->enqueue” in set S is 200, we then set its
weight as − (200/1,516). Furthermore, we also set a counting flag
– sum – in set S. To be specific, if the APK contains at least one
of the features either in set D1 ∩ L1 or in set D2 ∩ L2, we add
+(d(s,m,b)/1,516) or − (d(s,b,m)/1,516) to sum, respectively; if the

Table 3: The Sequences of Apps

Set # Sequences by # Sequences by
“Subtraction-Differential” “Logarithm-Differential”

D1 13 N/A

D2 14 N/A

D 27 N/A

L1 N/A 16

L2 N/A 11

L N/A 27

S 13

APK does not contain any one of the features in set S, the value of
sum remains unchanged.

By further tuning the parameters, we conclude that for each of
the 7,970 apps if the sum value of the set S outnumber the thresh-
old 0.4, the corresponding sequence is heuristically marked as ‘1’;
otherwise, it is marked as ‘0’. Hence, we convert such a 13-
dimensional input vector into one sequence feature of the set S.

Figure 3 (resp. Figure 5) shows the top 13 (Malicious - Benign)
(resp. top 14 Benign - Malicious) sequences sorted by 3,032 ma-
licious and benign samples. Correspondingly, the quantity of their
exact differences are represented in Figure 4 (resp. Figure 6). The
sequences are ordered by decreasing number of differences, respec-
tively.
Dynamic Behavior. Dynamic behaviors observe the malicious ac-
tivities triggered by each application. Based on our observation
that malicious apps tend to request sensitive information more fre-
quently than the benign one, we thus include it into our combina-
torial set of contributed features. To obtain the dynamic behaviors
of Android app, we run the apk file of an app in DroidBox6. We
then statically analyze the saved log files to extract the top features
of dynamic behaviors. That would be network activity, file sys-
tem access, interaction with the operating system, etc. As shown

6https://code.google.com/p/droidbox/

381

URLConnection.getURL

NotificationManager.notify

WifiManager.getWifiState

WifiManager.setWifiEnabled

URLConnection.setConnectTimeout

URLConnection.getContentType

Runtime.exec

URLConnection.setReadTimeout

SmsManager.sendTextMessage

TelephonyManager.getDeviceId

SmsManager.getDefault

TelephonyManager.getSimSerialNumber

TelephonyManager.getSubscriberId

0 500 1000 1500
Number of Samples

To
p

13
 S

eq
ue

nc
es

Type Benign Malicious

Figure 3: Top 13 differences of sensitive API calls between ma-
licious and benign apps by 3,032 benign and malicious samples

607

419

407

401

374

328

256

254

234

233

227

203

203

168

165

120120

GetSubscriberId

GetSimSerialNumber

GetDefault

GetDeviceId

SendTextMessage

SetReadTimeout

Exec

GetContentType

SetConnectTimeout

SetWifiEnabled

GetWifiState

GetURL

Notify

Delete

GetNetworkCountryIso

GetRuntime

0 200 400 600
Differences by Sequence

To
p

Se
qu

en
ce

s

Figure 4: The differences of sensitive API calls between ma-
licious and benign apps sorted by 3,032 benign and malicious
apps

in Figure 7, accessfiles is frequently requested by both benign and
malicious apps.

For experiment, we choose 1,516 benign and malicious APKs,
respectively from our data sets. Likewise, we remove some well-
known dynamic behavior-based features, such as “dexclass_load”
and “fdaccess”. In order to find the top dynamic behavior features
that yield the best performance in detecting new malware, we ul-
timately select 5 out of 15 dynamic behaviors as features from the
logs of each of the 7,970 benign and malicious APKs.

4. EXPERIMENTAL EVALUATION
The goals of our experiments are to determine: (i) the capabil-

ities of defined contributed features; (ii) the capabilities of accu-

Runtime.maxMemory

TelephonyManager.getNeighboringCellInfo

LocationManager.getGpsStatus

LocationManager.addGpsStatusListener

ActivityManager.getRunningAppProcesses

URLConnection.addRequestProperty

URL.openStream

TelephonyManager.getPhoneType

HttpURLConnection.getResponseCode

WifiManager.getScanResults

WifiManager.isWifiEnabled

WifiManager.getConnectionInfo

TelephonyManager.getNetworkType

PackageManager.checkPermission

0 500 1000 1500
Number of Samples

To
p

14
 S

eq
ue

nc
es

Type Benign Malicious

Figure 5: Top 14 differences of sensitive API calls between be-
nign and malicious apps by 3,032 benign and malicious samples

118
123
134
149
155
159
168
198
201
211
216
217

227
227

248
252
263
291

302
302

425
591CheckPermission

GetNetworkType
GetConnectionInfo

IsWifiEnabled
GetScanResults

GetResponseCode
GetPhoneType

OpenStream
AddRequestProperty

getRunningAppProcesses
AddGpsStatusListener

GetGpsStatus
GetNeighboringCellInfo

MaxMemory
NewWakeLock

GetContent
RequestLocationUpdates

Disconnect
GetConfiguration

GetLastKnownLocation
GetRequestMethod

AddNmeaListener

0 200 400 600
Differences by Sequence

To
p

Se
qu

en
ce

s

Figure 6: The differences of sensitive API calls between ma-
licious and benign apps sorted by 3,032 benign and malicious
apps

rately detecting malicious apps; and (iii) the efficiency and scala-
bility of real-time analysis.

4.1 Experimental Setup
We take advantage of the different types of features to obtain

two groups of experimental result. A group uses a basic set of con-
tributed features as a benchmark, which includes the two widely
used features, namely requested permissions and sensitive API
calls; and the other group is joined by our defined two types of
contributed features, which are sequences and dynamic behaviors,
to determine if they are indeed contributing to differentiate the ma-
licious apps. To do so, we compare two sets of contributed features
over the same data set, for different machine learning classifiers.

For a meaningful comparison, we list the results of two feature

382

Dataleaks

Accessedfiles

Sendnet

Recvnet

Sendsms

0 100 200 300
Number of Samples

To
p

5
D

yn
am

ic
 B

eh
av

io
rs

Type Benign Malicious

Figure 7: Comparison of top 5 requested dynamic behaviors
by 3,032 benign and malicious apps sorted by 3,032 benign and
malicious apps

groups which are used to train on six classifiers with respect to the
aspects of true positives (denoted as TP), false positives (denoted as
FP), receiver operating characteristic (denoted as ROC), precision
(denoted as P), recall rate (denoted as Rec), and accuracy (denoted
as A). TP rate refers to the malicious instances that are classified
as malicious apps relative to all malicious instances. FP rate refers
to all non-malicious instances that are classified as malicious apps
relative to all malicious instances. ROC is a graphical depiction of
classifier performance that shows the trade-off between increasing
TP rates and increasing FP rates as the discrimination threshold
of the classifier is varied. Precision rate refers to the probability
that an app is correctly classified as a malicious app. Recall rate is
defined as the portion of the total malicious apps that are classified
as malware. Accuracy simply measures that the classifier makes the
correct prediction. We highlight the best result of the six classifiers
in bold.

We randomly select 1,000 malware as samples out of the set
of 3,620 malicious samples and scan them using StormDroid and
other industrial malware detecting tools. For comparison, the 1,000
samples include three sections as shown in Table 1. In order to
maintain objectivity, the 1,000 samples contain both benchmarks
before 2013 (partially from [40]) and most recent sets, more than
half of which are the latest malware.

We measure the efficiency and scalability of StormDroid perfor-
mance, and perform the entire process of StormDroid, using single
thread and distributed real-time streaming, respectively, on a server
with 16 GB memory, 8 cores at 3.0 GHz, and 1 TB hard drives. We
randomly choose 200 out of 7,970 APKs with a single thread to
compare with StormDroid. The 200 APKs are in four groups with
the number of 200, 50, 40, 20 in each group, respectively.

4.2 Classification Methods
In this section, we analyze the performance of different machine

learning classifiers, including Support Vector Machines (SVM),
Decision Tree (C4.5), Artificial Neural Networks (MLP), Naive
Bayes (NB), K-Nearest Neighbors (IBK), and Bagging predictor.
Our goal is to determine whether the selected features – permis-
sions, sensitive API calls, sequences, and dynamic behaviors – can
provide insights into characterizing the behaviors of apps.

In machine learning, SVM is supervised learning models with
associated learning algorithms that analyze data and recognize pat-
terns, used for classification and regression analysis. C4.5, as an
extension of earlier ID3 algorithm, can be used for classification.
MLP are a family of statistical learning models inspired by bio-
logical neural networks and are used to estimate or approximate
functions that can depend on a fairly large number of inputs. NB

classifiers are a family of simple probabilistic classifiers based on
applying Bayes’ theorem with strong independence assumptions
between the features. IBK is a non-parametric method usually used
for classification and regression.

The training set of each base classifier is generated by ran-
domly drawing training samples, with replacement, from the origi-
nal training set (See Table 5). The final prediction of an instance is
based on the majority vote of all base classifiers’ predictions.

4.3 Experimental Results
(i) The capabilities of defined contributed features.

We use StormDorid, which has already packaged all these afore-
mentioned machine learning algorithms, to test the level of accu-
racy with respect to different algorithms. We list their average val-
ues of each index. Table 4 reports the classification results with re-
spect to different classifiers on all benchmark data sets. As shown
in Table 4, the second category generally outperforms the first cat-
egory. Namely, the combined features yield the best outcomes.
Thus, we choose the combination of apps permissions, sensitive
API calls, sequences, and dynamic behaviors as our feature selec-
tion scheme.

Moreover, Table 4 reports the classification results across differ-
ent categories. In the first category, the performance of K-Nearest
Neighbors (IBK) and Artificial Neural Networks (MLP) classifiers
are better than other classifiers; and their accuracy rates are larger
than 91.00%. The accuracy of the Bagging predictor (90.65%)
and Support Vector Machines (SVM) classifier (90.46%) are fairly
good. In the second category, K-Nearest Neighbors (IBK) and
Support Vector Machines (SVM) classifier achieve their best ac-
curacy rates at 93.80% and 93.20%, respectively, which is 1.22%
and 2.74% higher than its counterparts in the first category. Hence,
the K-Nearest Neighbors (IBK) classifier deliver the best accuracy
by using our selected features.

Furthermore, we evaluate the execution time for each classifier.
Support Vector Machines (SVM), Decision Tree (C4.5), K-Nearest
Neighbors (IBK), Naive Bayes (NB), and Bagging predictor com-
plete the experiments by using almost the same amount of time,
i.e., less than 60 seconds. However, the Artificial Neural Networks
(MLP) takes significantly more time than the above-mentioned
ones as multi-layer neural networks are time-consuming.

We further compare our work with the previous work. As shown
in Table 5, our accuracy rate (all greater than 90.00%) completely
outperforms the accuracy rate (no greater than 80.00%) in Yuan
et al. [38]. We achieve the highest accuracy because of the novel
feature combination method. That is, we select the combination of
four top features – apps permissions, sensitive API calls, sequences,
and dynamic behaviors – as our features. In contrast, the previous
work only use combined features, yet without sequence, as feature
groups.

Furthermore, the best performing classifier in our work is the
K-Nearest Neighbors (IBK), which requires little computational
resources. By choosing a good set of features and the appropri-
ate classifier, we can complete classification process less than one
minute.
(ii) The capabilities of accurately detecting malicious apps.

To circumvent the over-fitting issue and to better understand the
coverage of our approach, we randomly sample 1,000 malware
apps from our data set and scan them using StormDroid and other
well-known industrial malware detection tools, such as Trend Mi-
cro and Kaspersky. The coverage of StormDroid, with the com-
bined top features, is 94.60%, better than what can be achieved by
any individual scanner, including such top-of-the-line antivirus sys-
tems as 360 (86.20%), McAfee (84.20%), Avira (75.40%), Kasper-

383

Table 4: The performance of machine learning algorithms

ML Algorithm Category 1 Category 2
(Permissions + Sensitive API calls) (Permissions + Sensitive API calls

+ Sequences + Dynamic Behaviors)

Support Vector Machines (SVM)
90.50%(TP) 9.50%(FP) 90.40%(ROC)
90.50%(P) 90.50%(Rec) 90.46%(A)

93.20%(TP) 6.80%(FP) 93.20%(ROC)
93.20%(P) 93.20%(Rec) 93.20%(A)

Decision Tree (C4.5)
88.40%(TP) 11.60%(FP) 92.00%(ROC)

88.20%(P) 92.00%(Rec) 88.24%(A)
91.00%(TP) 9.00%(FP) 92.10%(ROC)
91.40%(P) 91.00%(Rec) 91.00%(A)

Artificial Neural Networks (MLP)
91.30%(TP) 8.70%(FP) 96.20%(ROC)
91.40%(P) 91.20%(Rec) 91.23%(A)

92.60%(TP) 7.40%(FP) 97.30%(ROC)
92.60%(P) 92.60%(Rec) 92.60%(A)

Naive Bayes (NB)
88.20%(TP) 11.80%(FP) 94.20%(ROC)

88.90%(P) 88.20%(Rec) 88.15%(A)
90.80%(TP) 9.20%(FP) 94.20%(ROC)
91.10%(P) 90.80%(Rec) 90.80%(A)

K-Nearest Neighbors (IBK)
92.60%(TP) 7.40%(FP) 94.90%(ROC)
92.60%(P) 92.60%(Rec) 92.58%(A)

93.80%(TP) 6.20%(FP) 96.70%(ROC)
93.80%(P) 93.80%(Rec) 93.80%(A)

Bagging predictor
90.70%(TP) 9.30%(FP) 96.80%(ROC)
90.70%(P) 90.70%(Rec) 90.65%(A)

92.80%(TP) 7.20%(FP) 97.90%(ROC)
92.80%(P) 92.80%(Rec) 92.80%(A)

Table 5: Comparative results of our work and the previous work

ML Algorithm Yuan et al. [38] (Accuracy) Ours (StormDroid) (Accuracy)
Support Vector Machines (SVM) 80.00% 93.20%

Decision Tree (C4.5) 77.50% 91.00%

Artificial Neural Networks (MLP) 79.50% 92.60%

Naive Bayes (NB) 79.00% 90.80%

K-Nearest Neighbors (IBK) N/A 93.80%
Bagging predictor N/A 92.80%

Best
Performing
Classifier

Support Vector Machines (SVM) K-Nearest Neighbors (IBK)

Universal Data Set Size 500 APKs 7,970 APKs

Training Set Size 300 APKs 3,000 APKs

Test Set Size 200 APKs 2,000 APKs

sky (55.60%), and Trend Micro (41.40%). The details of the refer-
ence experiment study is presented in Table 6.
(iii) The efficiency and scalability of real-time analysis.

To support a high-performance detection of apps, StormDroid
is designed to run on top of a stream processing framework (See
Figure 1). Specifically, our implementation is built on top of the
Storm7, an open-source distributed real-time stream-processing en-
gine that also powers leading web services, such as WebMD, Al-
ibaba, and Yelp. StormDroid supports a large-scale analysis of a
data stream by a set of worker units that connect to each other,
forming a topology. In our implementation, the work flow of the
whole detection process is converted into such a topology: a sub-
mitted app is first disassembled to extract its features; then, the
app’s “differential” metrics are calculated, the intersection analysis
is run, and a binary input vector is finally obtained. Each opera-
tion here is delegated to a worker unit on the topology and all the
data associated with the app are in a single stream. The Storm-
Droid engine is designed to support concurrently processing mul-
tiple streams, which enables a market to efficiently detect a large
number of submissions.

Running on top of the Storm stream processor, our prototype is
tested against the data sets divided into different test groups with
the same size, in order to show that the size of the group is un-
affected with the efficiency of StormDroid. We ultimately choose
200 out of 7,970 APKs with a single thread to test the efficiency of
StormDroid. Table 7 clearly shows that the execution efficiency of
StormDroid significantly outperforms the single thread by approx-
imately three times according to each respective group.

7http://storm.apache.org/

As shown in Table 7, the smaller the data set is, the larger the
ratio of the running time of StormDroid relative to that of the single
thread becomes. Overall, we show that the size of the group is
unaffected with the efficiency enhancement and the StormDroid is
indeed capable of scaling to the massive data sets.

5. DISCUSSION
(i) Blurred line between benign and malicious. In practice, the
line between benign and malicious might be blurred and subjec-
tive. It depends on specific security requirements and use cases to
determine whether an access pattern is really benign or malicious.
For example, individual users may like rooting their own devices
and using the game hacking apps mentioned above, while game
developers treat them as malicious because they bypass the in-app
purchase.
(ii) The unavailability of representative malicious and benign
applications. To avoid crafting detection patterns manually, we
make use machine learning for generating detection models. While
learning techniques provide a powerful tool for automatically infer-
ring models, they require a representative basis of data for training.
That is, the quality of the detection model of StormDroid critically
depends on the availability of representative malicious and benign
applications. While it is straightforward to collect benign appli-
cations, gathering recent malware samples requires some technical
effort.
(iii) The limitation of decompilation. Decompiling is the prepa-
ration of extracting features of Android malware, the mainstay of
training potentially harmful mobile apps. However, we cannot
guarantee that all the APKs can be decompiled successfully. We

384

Table 6: Reference experiment: The coverage of other leading malware detection tools

Malware Detection Tool The Number of Detection The Coverage of Detection (Percentage)
Ours (StormDroid) 1,000 94.60%
Trend Micro 1,000 41.40%

Kaspersky 1,000 55.60%

360 1,000 86.20%

McAfee 1,000 84.20%

Avira 1,000 75.40%

Table 7: Experimental evaluation

APKs Experimental Times # APKs per Group AVG Single Time (sec) AVG StromDroid Time (sec) Ratio
200 10 20 715 209 0.29

200 10 40 718 201 0.28

200 10 50 712 203 0.29

200 10 200 710 207 0.29

*Ratio is defined as the AVG StromDroid Time relative to the AVG Single Time, i.e., AV GStromDroidTime/AV GSingleTime.

find that the decompilation to source code is more likely to fail than
to Smali files, which hinders the feature extraction process. There-
fore, we alternatively choose to decompile the APKs to Smali files.
(iv) The inexplicability of our features and the misuse of ma-
chine learning. In this paper, we use four types of features
– required permissions, sensitive API calls, sequences, and dy-
namic behaviors – for machine learning. In the course of fea-
ture selection, what we de facto do is to simply compare dif-
ferent features of training apps (those including malicious and
benign apps) to inspect their different parts to identify suspi-
cious features. These features, once found to be inexplica-
ble, are almost certain to be malicious, as discovered in our
study (See Section 3). This similarity analysis is well suited
for finding previously unknown malicious behaviors, without re-
sorting to any complex techniques. For example, apart from
prior researches, we surprisingly observe that “URLConnection;-
>getContentType” and “URLConnection;->getURL” are newly-
discovered top suspicious features for malicious behaviors. In ad-
dition, for example, the screen-locking extortion behavior can be
detected usually by simultaneously discovering a series of per-
missions, which are “RECEIVE_SYSTEM_ALERT_WINDOW”,
“SYSTEM_ALERT_WINDOW”, and “WEKA_LOCK”. In this
work, by training the combination of our newly-defined and well-
received features, we are able to discover the Android lock-screen-
type ransomware. As a proof-of-concept, we have novelly at-
tempted to define many different features and extracted 155 fea-
tures for our detection model. In the future, we, nevertheless, will
also argue that the malware detection is still able to be effective
even when using a small number of features and simple detection
algorithms ensure that stringent resource constraints (i.e., CPU and
battery) on the device are met.

Another limitation which follows from the use of machine learn-
ing is the possibility of mimicry and poisoning attacks [26]. Such
attempts to escape detection are likely to be deemed suspicious and
may invite further scrutiny. While obfuscation strategies, such as
repackaging, code reordering, or junk code insertion do not af-
fect StormDroid, renaming of activities and components between
the learning and detection phase may impair discriminative fea-
tures [29]. Similarly, an attacker may succeed in lowering the de-
tection score of StormDroid by incorporating benign features or
fake invariants into malicious applications [26]. Although such at-
tacks against learning techniques cannot be ruled out in general, the

thorough sanitization of learning data and a frequent retraining on
representative data sets can limit their impact.

6. RELATED WORK
Thwarting malware attacks on smart devices has recently be-

come a long-standing topic.
Two generic approaches that have been proposed to detect mal-

ware: static analysis [12, 16, 17, 21, 25] and dynamic analy-
sis [6, 10, 13, 33]. Although several approaches have been success-
fully put into practice, Moser et al. [22] developed various obfusca-
tion techniques that are especially effective against static analysis.
On the other hand, approaches based on dynamic code analysis [11]
are promising, which provides a complete overview of automated
dynamic malware analysis techniques, but adopting and adapting
them to smart devices is not straightforward. Specifically, power
consumption and a constant monitoring executed on the platform
may simply be unaffordable [20]. External analysis performed on
the cloud in near real time constitute an alternative, though it is not
exempted from privacy-pertinent leakages.

Therefore, resource limitations of smartphones have lead re-
searchers to propose collaborative analysis techniques, where the
analysis is made by a network of devices. Both static and dynamic
analysis [30] have been proposed using these techniques. Static
and dynamic analysis solutions are primarily implemented using
two methods: signature-based [3, 14, 18, 39, 41] and behavior-
based [13, 28, 35, 37]. Signature-based is a common method used
by antivirus vendors and it relies on the identification of unique
signatures that define the malware. While being very precise,
signature-based methods are useless against unknown malicious
code. The behavior-based methods are based on rules or features
which are either determined by experts or by machine learning
techniques that define a malicious or a benign behavior, in order
to detect unknown malware [27].

As recently proposed by Antivirus companies, static analysis can
be deployed for malware detection in Android devices [32]. But
due to the limited resources of smartphones, most of the recent
proposals for malware detection on Android devices are based on
behavior analysis for anomaly detection.

The difficulty of manually crafting and updating detection pat-
terns for Android malware has motivated the application of ma-
chine learning. Several methods have been proposed that analyze
applications automatically using learning methods [4, 25, 31]. As

385

an example, the method of Peng et al. [25] applied probabilistic
learning methods to the permissions of applications for malware
detection. Zhou et al. [41] first proposed to use permission behav-
ior to detect new Android malware and then applies heuristic filter-
ing for detecting unknown Android malware. This hybrid method,
called DroidRanger, resolves the disadvantage of lacking ability to
detect unknown malware. Similarly, the methods Crowdroid [6],
DroidMat [36], Adagio [15], MAST [8], and DroidAPIMiner [1]
analyzed features statically extracted from Android applications us-
ing machine learning techniques. All these existing methods have
essentially advanced the Android malware detection, but the mis-
use detection is not adaptive to the novel Android malware and
always requires frequent updating of the signatures. However, our
work differs from aforementioned approaches by novelly proposing
a framework to analyze Android Apps based on machine learning
techniques. The framework relies on a combination of requested
permissions, sensitive API calls, malicious execution sequences,
and dynamic behaviors, which extracts features and builds classi-
fiers to detect malicious apps before installation.

From another perspective, in order to improve the smart-
phone security and privacy, a number of platform-level extensions
have been proposed. Specifically, Apex [23], MockDroid [5],
TISSA [42] and AppFence [19] extended the current Android
framework to provide find-grained controls of system resources
accessed by untrusted third-party applications. Note that none
of them characterizes the existing Android malware. Recently,
MassVet [9] was developed for vetting apps at a massive scale
within a very short time by also using Storm. Their approach sim-
ply compares a submitted app with all those already on a market,
focusing on the difference between those sharing a similar UI struc-
ture and the commonality among those seemingly unrelated. How-
ever, to the best of our knowledge, followed up with the line of
behavior-based methods, we are the first to develop a streamin-
glized machine learning-based real-time analysis system, Storm-
Droid, making it fast to reliably process large streams of data when
extracting features and running machine learning classifiers.

7. CONCLUSION
We proposed a streaminglized machine learning framework for

malware detection. First, we collected two unique type of con-
tributed features that are observed over a randomly selected large-
scale data set, and introduced a novel combination set of con-
tributed features for machine learning. Second, we streaminglized
the whole process of malware detection by streaming not only the
data processing but all stages of feature extraction and classifica-
tion. The framework, StormDroid, demonstrated its accuracy and
efficiency in classifying malicious applications. Indeed, evalua-
tion results showed that StormDroid is able to achieve 94% ac-
curacy, significantly outperforming almost all the top-of-the-line
and off-the-shelf antivirus systems. This work not only provides
novel contributed features for malware detection, but also suggests
a new perspective on the streaminglized MD process. We expect
our study to draw more public attention to this serious security is-
sue and hopefully motivate better detection methods, as shown in
this paper. Only time will tell whether malicious apps can be de-
tected on a massive scale, thereby rendering the Google Play Store
not only productive but also completely privacy-preserving.

Acknowledgements
This work was supported in part by the National Natural Sci-
ence Foundation of China, under Grant 61502170, 61272444,
61411146001, U1401253, and U1405251, in part by the Sci-

ence and Technology Commission of Shanghai Municipality under
Grant 13ZR1413000, in part by Pwnzen Infotech Inc.

8. REFERENCES
[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining

api-level features for robust malware detection in android. In
Security and Privacy in Communication Networks, pages
86–103. Springer, 2013.

[2] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, Y. Le Traon,
et al. Large-scale machine learning-based malware detection:
confronting the 10-fold cross validation scheme with reality.
In Proceedings of the 4th ACM conference on Data and
application security and privacy, pages 163–166. ACM,
2014.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In ACM SIGPLAN Notices,
volume 49, pages 259–269. ACM, 2014.

[4] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 73–84. ACM,
2010.

[5] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
Mockdroid: trading privacy for application functionality on
smartphones. In Proceedings of the 12th Workshop on
Mobile Computing Systems and Applications, pages 49–54.
ACM, 2011.

[6] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for android. In
Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pages 15–26.
ACM, 2011.

[7] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 143–163. Springer, 2008.

[8] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast:
triage for market-scale mobile malware analysis. In
Proceedings of the sixth ACM conference on Security and
privacy in wireless and mobile networks, pages 13–24.
ACM, 2013.

[9] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In
USENIX Security, volume 15, 2015.

[10] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra.
Madam: A multi-level anomaly detector for android
malware. In MMM-ACNS, volume 12, pages 240–253.
Springer, 2012.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on
automated dynamic malware-analysis techniques and tools.
ACM Computing Surveys (CSUR), 44(2):6, 2012.

[12] K. O. Elish, D. D. Yao, B. G. Ryder, and X. Jiang. A static
assurance analysis of android applications. 2013.

[13] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

386

[14] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based detection of android malware through static
analysis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 576–587. ACM, 2014.

[15] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural
detection of android malware using embedded call graphs. In
Proceedings of the 2013 ACM workshop on Artificial
intelligence and security, pages 45–54. ACM, 2013.

[16] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international
conference on Mobile systems, applications, and services,
pages 281–294. ACM, 2012.

[17] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock android smartphones. In
NDSS, 2012.

[18] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh. Automatic
generation of string signatures for malware detection. In
Recent Advances in Intrusion Detection, pages 101–120.
Springer, 2009.

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications. In
Proceedings of the 18th ACM conference on Computer and
communications security, pages 639–652. ACM, 2011.

[20] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy
anomalies and mobile malware variants. In Proceedings of
the 6th international conference on Mobile systems,
applications, and services, pages 239–252. ACM, 2008.

[21] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 229–240. ACM, 2012.

[22] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. In Computer security applications
conference, 2007. ACSAC 2007. Twenty-third annual, pages
421–430. IEEE, 2007.

[23] M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with
user-defined runtime constraints. In Proceedings of the 5th
ACM Symposium on Information, Computer and
Communications Security, pages 328–332. ACM, 2010.

[24] N. Peiravian and X. Zhu. Machine learning for android
malware detection using permission and api calls. In Tools
with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on, pages 300–305. IEEE, 2013.

[25] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Using probabilistic generative
models for ranking risks of android apps. In Proceedings of
the 2012 ACM conference on Computer and communications
security, pages 241–252. ACM, 2012.

[26] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif.
Misleading worm signature generators using deliberate noise
injection. In Security and Privacy, 2006 IEEE Symposium
on, pages 15–pp. IEEE, 2006.

[27] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning
approach for classifying and categorizing android sources
and sinks. In 2014 Network and Distributed System Security
Symposium (NDSS), 2014.

[28] V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
automatic security analysis of smartphone applications. In

Proceedings of the third ACM conference on Data and
application security and privacy, pages 209–220. ACM,
2013.

[29] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon:
evaluating android anti-malware against transformation
attacks. In Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security,
pages 329–334. ACM, 2013.

[30] S. Rosen, Z. Qian, and Z. M. Mao. Appprofiler: a flexible
method of exposing privacy-related behavior in android
applications to end users. In Proceedings of the third ACM
conference on Data and application security and privacy,
pages 221–232. ACM, 2013.

[31] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Android permissions: a perspective
combining risks and benefits. In Proceedings of the 17th
ACM symposium on Access Control Models and
Technologies, pages 13–22. ACM, 2012.

[32] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz,
K. Yüksel, S. Camtepe, S. Albayrak, et al. Static analysis of
executables for collaborative malware detection on android.
In Communications, 2009. ICC’09. IEEE International
Conference on, pages 1–5. IEEE, 2009.

[33] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss.
Andromaly: a behavioral malware detection framework for
android devices. Journal of Intelligent Information Systems,
38(1):161–190, 2012.

[34] G. Tahan, L. Rokach, and Y. Shahar. Mal-id: Automatic
malware detection using common segment analysis and
meta-features. The Journal of Machine Learning Research,
13(1):949–979, 2012.

[35] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang. Airbag:
Boosting smartphone resistance to malware infection. In
Proceedings of the Network and Distributed System Security
Symposium, 2014.

[36] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu.
Droidmat: Android malware detection through manifest and
api calls tracing. In Information Security (Asia JCIS), 2012
Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[37] L.-K. Yan and H. Yin. Droidscope: Seamlessly
reconstructing the os and dalvik semantic views for dynamic
android malware analysis. In USENIX security symposium,
pages 569–584, 2012.

[38] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: deep
learning in android malware detection. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 371–372. ACM,
2014.

[39] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast,
scalable detection of piggybacked mobile applications. In
Proceedings of the third ACM conference on Data and
application security and privacy, pages 185–196. ACM,
2013.

[40] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 95–109. IEEE, 2012.

[41] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and
alternative android markets. In NDSS, 2012.

[42] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on android).
In Trust and Trustworthy Computing, pages 93–107.
Springer, 2011.

387

APPENDIX
A. LIST OF FEATURES

Table 8: List of Features

Permission *WRITE_SYNC_SETTINGS *LocationManager.clearTestProviderLocation
* ACCESS_COARSE_LOCATION *WRITE_EXTERNAL_STORAGE *LocationManager.clearTestProviderEnabled

* ACCESS_FINE_LOCATION Sensitive API Call *LocationManager.addTestProvider
* LOCATION_EXTRA_COMMANDS *URL.openConnection *LocationManager.addProximityAlert

* ACCESS_MOCK_LOCATION *URL.openStream *ContentResolver.applyBatch
* ACCESS_NETWORK_STATE *URL.getConten *ContentResolver.bulkInsert

* ACCESS_WIFI_STATE *TelephonyManager.getCallState *ContentResolver.openAssetFileDescriptor
* AUTHENTICATE_ACCOUNTS *TelephonyManager.getDeviceId *ContentResolver.openFileDescriptor

* BATTERY_STATS *TelephonyManager.getDeviceSoftwareVersion *ContentResolver.query
* BLUETOOTH *TelephonyManager.getNeighboringCellInfo *ContentResolver.registerContentObserver

* BLUETOOTH_ADMIN *TelephonyManager.getNetworkCountryIso *ContentResolver.update
* BROADCAST_STICKY *TelephonyManager.getNetworkOperator *ContentResolver.delete

* CALL_PHONE *TelephonyManager.getNetworkOperatorName *Runtime.getRuntime
* CAMERA *TelephonyManager.getNetworkType *Runtime.exec

* CHANGE_CONFIGURATION *TelephonyManager.getPhoneType *Runtime.addShutdownHook
* CHANGE_NETWORK_STATE *TelephonyManager.getSimCountryIso *Runtime.getRuntime
* CHANGE_WIFI_MULTICAST_STATE *TelephonyManager.getSimSerialNumber *Runtime.maxMemory

*CHANGE_WIFI_STATE *TelephonyManager.getSimState *URLConnection.addRequestProperty
*CLEAR_APP_CACHE *TelephonyManager.getSimOperator *URLConnection.connect
*DELETE_PACKAGES *TelephonyManager.getSimOperatorName *URLConnection.getContent

*DEVICE_POWER *TelephonyManager.getSubscriberId *URLConnection.getContentType
*DISABLE_KEYGUARD *TelephonyManager.isNetworkRoaming *URLConnection.getURL
*EXPAND_STATUS_BAR *SmsManager.divideMessage *URLConnection.setConnectTimeout

*FLASHLIGHT *SmsManager.getDefault *URLConnection.setReadTimeout
*GET_ACCOUNTS *SmsManager.sendMultipartTextMessage *ActivityManager.getLargeMemoryClass

*GET_PACKAGE_SIZE *SmsManager.sendTextMessage *ActivityManager.getRunningAppProcesses
*GET_TASKS *HttpURLConnection.disconnect *ActivityManager.killBackgroundProcesses

*INSTALL_PACKAGES * HttpURLConnection.getContentEncoding *ActivityManager.restartPackage
*INTERNET * HttpURLConnection.getRequestMethod *System.getConfiguration

*MANAGE_ACCOUNTS *HttpURLConnection.getResponseCode *System.getUriFor
*MODIFY_AUDIO_SETTINGS *HttpURLConnection.getResponseMessage *BluetoothAdapter.enable

*MODIFY_PHONE_STATE *PowerManager.newWakeLock *DownloadManager.enqueue
*PROCESS_OUTGOING_CALLS *PowerManager.isScreenOn *DownloadManager.query

*READ_CALENDAR *PackageManager.checkPermission *LocationManager.addGpsStatusListener
*READ_CALL_LOG *NotificationManager.notify *LocationManager.addNmeaListener

*READ_CONTACTS *NotificationManager.cancel Sequence
*READ_EXTERNAL_STORAGE *TelephonyManager.getVoiceMailNumber *TelephonyManager;->getSubscriberId

*READ_LOGS *WifiManager.setWifiEnabled *TelephonyManager;->getSimSerialNumber
*READ_PHONE_STATE *WifiManager.saveConfiguration *SmsManager;->getDefault

*READ_SMS *WifiManager.removeNetwork *SmsManager;->sendTextMessage
*READ_SYNC_SETTINGS *WifiManager.isWifiEnabled *Runtime;->exec

*RECEIVE_BOOT_COMPLETED *WifiManager.getWifiState *URLConnection;->getContentType
*RECEIVE_MMS *WifiManager.getScanResults *WifiManager;->setWifiEnabled
*RECEIVE_SMS *WifiManager.getDhcpInfo *WifiManager;->getWifiState

* RECEIVE_WAP_PUSH *WifiManager.getConnectionInfo *URLConnection;->getURL
*RECORD_AUDIO *WifiManager.getConfiguredNetworks *LocationManager;->addGpsStatusListener

*REORDER_TASKS *WifiManager.enableNetwork *LocationManager;->getGpsStatus
*RESTART_PACKAGES *WifiManager.createMulticastLock *TelephonyManager;->getNeighboringCellInfo

*SEND_SMS *WifiManager.createWifiLock *Runtime;->maxMemory

*SET_WALLPAPER *WifiManager.calculateSignalLevel Dynamic Behavior
*SYSTEM_ALERT_WINDOW *WifiManager.addNetwork *Sendsms

*USE_CREDENTIALS *LocationManager.sendExtraCommand *Recvnet
* VIBRATE *LocationManager.requestLocationUpdates *Sendnet

*WAKE_LOCK * LocationManager.getLastKnownLocation * Accessedfiles
* WRITE_APN_SETTINGS *LocationManager.getGpsStatus *Dataleaks

*WRITE_CALENDAR *LocationManager.getBestProvider N/A
*WRITE_SETTINGS *LocationManager.getAllProviders N/A

*WRITE_SMS *LocationManager.clearTestProviderStatus N/A

388

